Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Eur J Heart Fail ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639017

RESUMO

Pulmonary hypertension (PH) associated with left heart failure (LHF) (PH-LHF) is one of the most common causes of PH. It directly contributes to symptoms and reduced functional capacity and negatively affects right heart function, ultimately leading to a poor prognosis. There are no specific treatments for PH-LHF, despite the high number of drugs tested so far. This scientific document addresses the main knowledge gaps in PH-LHF with emphasis on pathophysiology and clinical trials. Key identified issues include better understanding of the role of pulmonary venous versus arteriolar remodelling, multidimensional phenotyping to recognize patient subgroups positioned to respond to different therapies, and conduct of rigorous pre-clinical studies combining small and large animal models. Advancements in these areas are expected to better inform the design of clinical trials and extend treatment options beyond those effective in pulmonary arterial hypertension. Enrichment strategies, endpoint assessments, and thorough haemodynamic studies, both at rest and during exercise, are proposed to play primary roles to optimize early-stage development of candidate therapies for PH-LHF.

2.
J Clin Med ; 13(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38592316

RESUMO

Background. The significance of concomitant tricuspid regurgitation (TR) in the context of transcatheter aortic valve replacement (TAVR) remains unclear. This study aimed to analyze the severity of TR before and after TAVR with regard to short- and long-term survival and to analyze the influencing factors. Methods. In our retrospective analysis, TR before and after TAVR was examined and patients were classified into groups accordingly. Special attention was paid to patients with post-interventional changes in TR. Mortality after TAVR was considered the primary endpoint of the analysis and major complications according to the Valve Academic Research Consortium 3 (VARC3) were compared. Moreover, biomarkers and risk factors for worsening or improvement of TR through TAVR were analyzed. Results. Among 775 patients who underwent TAVR in our center between January 2009 and December 2019, 686 patients (89%) featured low- and 89 patients (11%) high-grade TR. High-grade pre-TAVR TR was associated with worse short- (30-day), mid- (2-year) and long-term survival up to 8 years. Even though in nearly half of the patients with high-grade TR the regurgitation improved within seven days after TAVR (n = 42/89), this did not result in a survival benefit for this subgroup. On the other hand, a worsening of low-grade TR was seen in more than 10% of the patients (n = 73/686), which was also associated with a worse prognosis. Predictors of worsening of TR after TAVR were adipositas, impaired right ventricular function and the presence of mild TR. Age, atrial fibrillation, COPD, impaired renal function and elevated cardiac biomarkers were risk factors for mortality after TAVR independent from the grade of TR. Conclusions. Not only pre-interventional, but also post-TAVR high-grade TR is associated with a worse prognosis after TAVR. TAVR can change concomitant tricuspid regurgitation, but improvement does not have any impact on short- and long-term survival. Worsening of TR after TAVR is possible and impairs the prognosis.

3.
Front Endocrinol (Lausanne) ; 15: 1338458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469142

RESUMO

Introduction: The development of cognitive dysfunction is not necessarily associated with diet-induced obesity. We hypothesized that cognitive dysfunction might require additional vascular damage, for example, in atherosclerotic mice. Methods: We induced atherosclerosis in male C57BL/6N mice by injecting AAV-PCSK9DY (2x1011 VG) and feeding them a cholesterol-rich Western diet. After 3 months, mice were examined for cognition using Barnes maze procedure and for cerebral blood flow. Cerebral vascular morphology was examined by immunehistology. Results: In AAV-PCSK9DY-treated mice, plaque burden, plasma cholesterol, and triglycerides are elevated. RNAseq analyses followed by KEGG annotation show increased expression of genes linked to inflammatory processes in the aortas of these mice. In AAV-PCSK9DY-treated mice learning was delayed and long-term memory impaired. Blood flow was reduced in the cingulate cortex (-17%), caudate putamen (-15%), and hippocampus (-10%). Immunohistological studies also show an increased incidence of string vessels and pericytes (CD31/Col IV staining) in the hippocampus accompanied by patchy blood-brain barrier leaks (IgG staining) and increased macrophage infiltrations (CD68 staining). Discussion: We conclude that the hyperlipidemic PCSK9DY mouse model can serve as an appropriate approach to induce microvascular dysfunction that leads to reduced blood flow in the hippocampus, which could explain the cognitive dysfunction in these mice.


Assuntos
Aterosclerose , Hiperlipidemias , Masculino , Camundongos , Animais , Pró-Proteína Convertase 9/genética , Incidência , Camundongos Endogâmicos C57BL , Hiperlipidemias/patologia , Aterosclerose/metabolismo , Colesterol , Circulação Cerebrovascular/fisiologia
5.
Mol Ther Methods Clin Dev ; 32(1): 101163, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38178915

RESUMO

Rupture or dissection of thoracic aortic aneurysms is still the leading cause of death for patients diagnosed with Marfan syndrome. Inflammation and matrix digestion regulated by matrix metalloproteases (MMPs) play a major role in the pathological remodeling of the aortic media. Regnase-1 is an endoribonuclease shown to cleave the mRNA of proinflammatory cytokines, such as interleukin-6. Considering the major anti-inflammatory effects of regnase-1, here, we aimed to determine whether adeno-associated virus (AAV)-mediated vascular overexpression of the protein could provide protection from the development and progression of aortic aneurysms in Marfan syndrome. The overexpression of regnase-1 resulted in a marked decrease in inflammatory parameters and elastin degradation in aortic smooth muscle cells in vitro. Intravenous injection of a vascular-targeted AAV vector resulted in the efficient transduction of the aortic wall and overexpression of regnase-1 in a murine model of Marfan syndrome, associated with lower circulating levels of proinflammatory cytokines and decreased MMP expression and activity. Regnase-1 overexpression strongly improved elastin architecture in the media and reduced aortic diameter at distinct locations. Therefore, AAV-mediated regnase-1 overexpression may represent a novel gene therapy approach for inhibiting aortic aneurysms in Marfan syndrome.

6.
Cardiovasc Res ; 120(3): 273-285, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38099489

RESUMO

AIMS: Despite massive efforts, we remain far behind in our attempts to identify effective therapies to treat heart failure with preserved ejection fraction (HFpEF). Diastolic function is critically regulated by sarcoplasmic/endoplasmic reticulum (SR) calcium ATPase 2a (SERCA2a), which forms a functional cardiomyocyte (CM) microdomain where 3',5'-cyclic adenosine monophosphate (cAMP) produced upon ß-adrenergic receptor (ß-AR) stimulation leads to phospholamban (PLN) phosphorylation and facilitated Ca2+ re-uptake. METHODS AND RESULTS: To visualize real-time cAMP dynamics in the direct vicinity of SERCA2a in healthy and diseased myocytes, we generated a novel mouse model on the leprdb background that stably expresses the Epac1-PLN Förster resonance energy transfer biosensor. Mice homozygous for the leprdb mutation (db/db) developed obesity and type 2 diabetes and presented with a HFpEF phenotype, evident by mild left ventricular hypertrophy and elevated left atria filling pressures. Live cell imaging uncovered a substantial ß2-AR subtype stimulated cAMP response within the PLN/SERCA2a microdomain of db/db but not healthy control (db/+) CMs, which was accompanied by increased PLN phosphorylation and accelerated calcium re-uptake. Importantly, db/db CMs also exhibited a desensitization of ß1-AR stimulated cAMP pools within the PLN/SERCA2a microdomain, which was accompanied by a blunted lusitropic effect, suggesting that the increased ß2-AR control is an intrinsic compensatory mechanism to maintain PLN/SERCA2a-mediated calcium dynamics and cardiac relaxation. Mechanistically, this was due to a local loss of cAMP-degrading phosphodiesterase 4 associated specifically with the PLN/SERCA2a complex. CONCLUSION: These newly identified alterations of cAMP dynamics at the subcellular level in HFpEF should provide mechanistic understanding of microdomain remodelling and pave the way towards new therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Animais , Camundongos , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , AMP Cíclico , Diabetes Mellitus Tipo 2/complicações , Insuficiência Cardíaca/etiologia , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Volume Sistólico
7.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139185

RESUMO

Transcatheter pulmonary valve replacement is a minimally-invasive alternative treatment for right ventricular outflow tract dysfunction and has been rapidly evolving over the past years. Heart valve prostheses currently available still have major limitations. Therefore, one of the significant challenges for the future is the roll out of transcatheter tissue engineered pulmonary valve replacement to more patients. In the present study, biodegradable poly-ε-caprolactone (PCL) nanofiber scaffolds in the form of a 3D leaflet matrix were successfully seeded with human endothelial colony-forming cells (ECFCs), human induced pluripotent stem cell-derived MSCs (hMSCs), and porcine MSCs (pMSCs) for three weeks for the generation of 3D tissue-engineered tri-leaflet valved stent grafts. The cell adhesion, proliferation, and distribution of these 3D heart leaflets was analyzed using fluorescence microscopy and scanning electron microscopy (SEM). All cell lineages were able to increase the overgrown leaflet area within the three-week timeframe. While hMSCs showed a consistent growth rate over the course of three weeks, ECFSs showed almost no increase between days 7 and 14 until a growth spurt appeared between days 14 and 21. More than 90% of heart valve leaflets were covered with cells after the full three-week culturing cycle in nearly all leaflet areas, regardless of which cell type was used. This study shows that seeded biodegradable PCL nanofiber scaffolds incorporated in nitinol or biodegradable stents will offer a new therapeutic option in the future.


Assuntos
Células-Tronco Pluripotentes Induzidas , Poliésteres , Humanos , Animais , Suínos , Poliésteres/farmacologia , Engenharia Tecidual , Tecidos Suporte , Stents
8.
Pathogens ; 12(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38003766

RESUMO

Cardiac-targeted transgene delivery offers new treatment opportunities for cardiovascular diseases, which massively contribute to global mortality. Restricted gene transfer to cardiac tissue might protect extracardiac organs from potential side-effects. This could be mediated by using cis-regulatory elements, including promoters and enhancers that act on the transcriptional level. Here, we discuss examples of tissue-specific promoters for targeted transcription in myocytes, cardiomyocytes, and chamber-specific cardiomyocytes. Some promotors are induced at pathological states, suggesting a potential use as "induction-by-disease switches" in gene therapy. Recent developments have resulted in the identification of novel enhancer-elements that could further pave the way for future refinement of transcriptional targeting, for example, into the cardiac conduction system.

9.
Circ Res ; 133(10): 842-857, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37800327

RESUMO

BACKGROUND: Advanced age is unequivocally linked to the development of cardiovascular disease; however, the mechanisms resulting in reduced endothelial cell regeneration remain poorly understood. Here, we investigated novel mechanisms involved in endothelial cell senescence that impact endothelial cell transcription and vascular repair after injury. METHODS: Native endothelial cells were isolated from young (20±3.4 years) and aged (80±2.3 years) individuals and subjected to molecular analyses to assess global transcriptional and metabolic changes. In vitro studies were conducted using primary human and murine endothelial cells. A murine aortic re-endothelialization model was used to examine endothelial cell regenerative capacity in vivo. RESULTS: RNA sequencing of native endothelial cells revealed that aging resulted in p53-mediated reprogramming to express senescence-associated genes and suppress glycolysis. Reduced glucose uptake and ATP contributed to attenuated assembly of the telomerase complex, which was required for endothelial cell proliferation. Enhanced p53 activity in aging was linked to its acetylation on K120 due to enhanced activity of the acetyltransferase MOZ (monocytic leukemic zinc finger). Mechanistically, p53 acetylation and translocation were, at least partially, attributed to the loss of the vasoprotective enzyme, CSE (cystathionine γ-lyase). CSE physically anchored p53 in the cytosol to prevent its nuclear translocation and CSE absence inhibited AKT (Protein kinase B)-mediated MOZ phosphorylation, which in turn increased MOZ activity and subsequently p53 acetylation. In mice, the endothelial cell-specific deletion of CSE activated p53, induced premature endothelial senescence, and arrested vascular repair after injury. In contrast, the adeno-associated virus 9-mediated re-expression of an active CSE mutant retained p53 in the cytosol, maintained endothelial glucose metabolism and proliferation, and prevented endothelial cell senescence. Adenoviral overexpression of CSE in native endothelial cells from aged individuals maintained low p53 activity and reactivated telomerase to revert endothelial cell senescence. CONCLUSIONS: Aging-associated impairment of vascular repair is partly determined by the vasoprotective enzyme CSE.


Assuntos
Sulfeto de Hidrogênio , Telomerase , Animais , Humanos , Camundongos , Senescência Celular , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Células Endoteliais/metabolismo , Sulfeto de Hidrogênio/metabolismo , Telomerase/genética , Telomerase/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Science ; 381(6660): 897-906, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37616346

RESUMO

Aging is a major risk factor for impaired cardiovascular health. Because the aging myocardium is characterized by microcirculatory dysfunction, and because nerves align with vessels, we assessed the impact of aging on the cardiac neurovascular interface. We report that aging reduces nerve density in the ventricle and dysregulates vascular-derived neuroregulatory genes. Aging down-regulates microRNA 145 (miR-145) and derepresses the neurorepulsive factor semaphorin-3A. miR-145 deletion, which increased Sema3a expression or endothelial Sema3a overexpression, reduced axon density, mimicking the aged-heart phenotype. Removal of senescent cells, which accumulated with chronological age in parallel to the decline in nerve density, rescued age-induced denervation, reversed Sema3a expression, preserved heart rate patterns, and reduced electrical instability. These data suggest that senescence-mediated regulation of nerve density contributes to age-associated cardiac dysfunction.


Assuntos
Envelhecimento , Senescência Celular , Coração , MicroRNAs , Densidade Microvascular , Miocárdio , Semaforina-3A , Coração/inervação , Microcirculação , MicroRNAs/genética , MicroRNAs/metabolismo , Semaforina-3A/genética , Animais , Camundongos , Envelhecimento/genética , Envelhecimento/patologia , Masculino , Camundongos Endogâmicos C57BL , Senescência Celular/genética , Miocárdio/patologia , Axônios
11.
iScience ; 26(6): 106970, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37324527

RESUMO

Despite the development of clinical treatments, heart failure remains the leading cause of mortality. We observed that p21-activated kinase 3 (PAK3) was augmented in failing human and mouse hearts. Furthermore, mice with cardiac-specific PAK3 overexpression exhibited exacerbated pathological remodeling and deteriorated cardiac function. Myocardium with PAK3 overexpression displayed hypertrophic growth, excessive fibrosis, and aggravated apoptosis following isoprenaline stimulation as early as two days. Mechanistically, using cultured cardiomyocytes and human-relevant samples under distinct stimulations, we, for the first time, demonstrated that PAK3 acts as a suppressor of autophagy through hyper-activation of the mechanistic target of rapamycin complex 1 (mTORC1). Defective autophagy in the myocardium contributes to the progression of heart failure. More importantly, PAK3-provoked cardiac dysfunction was mitigated by administering an autophagic inducer. Our study illustrates a unique role of PAK3 in autophagy regulation and the therapeutic potential of targeting this axis for heart failure.

12.
J Am Heart Assoc ; 12(12): e028298, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37318028

RESUMO

Background Prolonged activation of angiotensin II is the main mediator that contributes to the development of heart diseases, so converting angiotensin II into angiotensin 1-7 has emerged as a new strategy to attenuate detrimental effects of angiotensin II. Prolylcarboxypeptidase is a lysosomal pro-X carboxypeptidase that is able to cleave angiotensin II at a preferential acidic pH optimum. However, insufficient attention has been given to the cardioprotective functions of prolylcarboxylpeptidase. Methods and Results We established a CRISPR/CRISPR-associated protein 9-mediated global prolylcarboxylpeptidase-knockout and adeno-associated virus serotype 9-mediated cardiac prolylcarboxylpeptidase overexpression mouse models, which were challenged with the angiotensin II infusion (2 mg/kg per day) for 4 weeks, aiming to investigate the cardioprotective effect of prolylcarboxylpeptidase against hypertensive cardiac hypertrophy. Prolylcarboxylpeptidase expression was upregulated after 2 weeks of angiotensin II infusion and then became downregulated afterward in wild-type mouse myocardium, suggesting its compensatory function against angiotensin II stress. Moreover, angiotensin II-treated prolylcarboxylpeptidase-knockout mice showed aggravated cardiac remodeling and dampened cardiac contractility independent of hypertension. We also found that prolylcarboxylpeptidase localizes in cardiomyocyte lysosomes, and loss of prolylcarboxylpeptidase led to excessive angiotensin II levels in myocardial tissue. Further screening demonstrated that hypertrophic prolylcarboxylpeptidase-knockout hearts showed upregulated extracellular signal-regulated kinases 1/2 and downregulated protein kinase B activities. Importantly, adeno-associated virus serotype 9-mediated restoration of prolylcarboxylpeptidase expression in prolylcarboxylpeptidase-knockout hearts alleviated angiotensin II-induced hypertrophy, fibrosis, and cell death. Interestingly, the combination of adeno-associated virus serotype 9-mediated prolylcarboxylpeptidase overexpression and an antihypertensive drug, losartan, likely conferred more effective protection than a single treatment protocol to mitigate angiotensin II-induced cardiac dysfunction. Conclusions Our data demonstrate that prolylcarboxylpeptidase protects the heart from angiotensin II-induced hypertrophic remodeling by controlling myocardial angiotensin II levels.


Assuntos
Angiotensina II , Hipertensão , Camundongos , Animais , Angiotensina II/metabolismo , Remodelação Ventricular/fisiologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Camundongos Knockout , Fibrose , Camundongos Endogâmicos C57BL
13.
Front Mol Biosci ; 10: 1169658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342207

RESUMO

Despite the identification of numerous molecular pathways modulating cardiac hypertrophy its pathogenesis is not completely understood. In this study we define an unexpected role for Fibin ("fin bud initiation factor homolog") in cardiomyocyte hypertrophy. Via gene expression profiling in hypertrophic murine hearts after transverse aortic constriction we found a significant induction of Fibin. Moreover, Fibin was upregulated in another mouse model of cardiac hypertrophy (calcineurin-transgenics) as well as in patients with dilated cardiomyopathy. Immunoflourescence microscopy revealed subcellular localization of Fibin at the sarcomeric z-disc. Overexpression of Fibin in neonatal rat ventricular cardiomyocytes revealed a strong anti-hypertrophic effect through inhibiting both, NFAT- and SRF-dependent signalling. In contrast, transgenic mice with cardiac-restricted overexpression of Fibin developed dilated cardiomyopathy, accompanied by induction of hypertrophy-associated genes. Moreover, Fibin overexpression accelerated the progression to heart failure in the presence of prohypertrophic stimuli such as pressure overload and calcineurin overexpression. Histological and ultrastructural analyses surprisingly showed large protein aggregates containing Fibin. On the molecular level, aggregate formation was accompanied by an induction of the unfolded protein response subsequent UPR-mediated apoptosis and autophagy. Taken together, we identified Fibin as a novel potent negative regulator of cardiomyocyte hypertrophy in vitro. Yet, heart-specific Fibin overexpression in vivo causes development of a protein-aggregate-associated cardiomyopathy. Because of close similarities to myofibrillar myopathies, Fibin represents a candidate gene for cardiomyopathy and Fibin transgenic mice may provide additional mechanistic insight into aggregate formation in these diseases.

14.
J Cachexia Sarcopenia Muscle ; 14(4): 1721-1736, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209006

RESUMO

BACKGROUND: Sepsis-induced intensive care unit-acquired weakness (ICUAW) features profound muscle atrophy and attenuated muscle regeneration related to malfunctioning satellite cells. Transforming growth factor beta (TGF-ß) is involved in both processes. We uncovered an increased expression of the TGF-ß receptor II (TßRII)-inhibitor SPRY domain-containing and SOCS-box protein 1 (SPSB1) in skeletal muscle of septic mice. We hypothesized that SPSB1-mediated inhibition of TßRII signalling impairs myogenic differentiation in response to inflammation. METHODS: We performed gene expression analyses in skeletal muscle of cecal ligation and puncture- (CLP) and sham-operated mice, as well as vastus lateralis of critically ill and control patients. Pro-inflammatory cytokines and specific pathway inhibitors were used to quantitate Spsb1 expression in myocytes. Retroviral expression plasmids were used to investigate the effects of SPSB1 on TGF-ß/TßRII signalling and myogenesis in primary and immortalized myoblasts and differentiated myotubes. For mechanistical analyses we used coimmunoprecipitation, ubiquitination, protein half-life, and protein synthesis assays. Differentiation and fusion indices were determined by immunocytochemistry, and differentiation factors were quantified by qRT-PCR and Western blot analyses. RESULTS: SPSB1 expression was increased in skeletal muscle of ICUAW patients and septic mice. Tumour necrosis factor (TNF), interleukin-1ß (IL-1ß), and IL-6 increased the Spsb1 expression in C2C12 myotubes. TNF- and IL-1ß-induced Spsb1 expression was mediated by NF-κB, whereas IL-6 increased the Spsb1 expression via the glycoprotein 130/JAK2/STAT3 pathway. All cytokines reduced myogenic differentiation. SPSB1 avidly interacted with TßRII, resulting in TßRII ubiquitination and destabilization. SPSB1 impaired TßRII-Akt-Myogenin signalling and diminished protein synthesis in myocytes. Overexpression of SPSB1 decreased the expression of early (Myog, Mymk, Mymx) and late (Myh1, 3, 7) differentiation-markers. As a result, myoblast fusion and myogenic differentiation were impaired. These effects were mediated by the SPRY- and SOCS-box domains of SPSB1. Co-expression of SPSB1 with Akt or Myogenin reversed the inhibitory effects of SPSB1 on protein synthesis and myogenic differentiation. Downregulation of Spsb1 by AAV9-mediated shRNA attenuated muscle weight loss and atrophy gene expression in skeletal muscle of septic mice. CONCLUSIONS: Inflammatory cytokines via their respective signalling pathways cause an increase in SPSB1 expression in myocytes and attenuate myogenic differentiation. SPSB1-mediated inhibition of TßRII-Akt-Myogenin signalling and protein synthesis contributes to a disturbed myocyte homeostasis and myogenic differentiation that occurs during inflammation.


Assuntos
Interleucina-6 , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Citocinas , Inflamação , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Miogenina/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa
15.
Vasa ; 52(4): 224-229, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37114353

RESUMO

Background: To determine the physician's perspective and perception on walking exercise as well as barriers in guideline-directed best medical treatment of patients with lower extremity peripheral arterial disease (PAD). Patients and methods: All members of the German Society for Vascular Surgery and Vascular Medicine and of the German Society for Angiology - Society for Vascular Medicine with valid email address were invited to participate in an electronic survey on walking exercise for treatment of intermittent claudication that was developed by the authors. Results: Amongst 3910 invited participants, 743 (19%) provided valid responses (33% females, 84% vascular surgery, 15% angiology). Thereof, 65% were employed by non-university hospitals, 16% by university institutions, and 18% by outpatient facilities. A mean of 14 minutes were spent per patient to counsel and educate, while only 53% responded they had enough time in everyday clinical practice. While 98% were aware of the beneficial impact of structured exercise training (SET) on pain free walking distance and 90% advise their patients to adhere to SET, only 44% provided useful guidance to patients to find local SET programmes and merely 42% knew how to prescribe SET as service that can be reimbursed by medical insurances. Approximately 35% knew a local SET programme and appropriate contact person. Health-related quality of life was assessed in a structured way by only 11%. Forty-seven percent responded that medical insurances should be responsible to implement and maintain SET programmes, while only 4% held hospital physicians responsible to achieve this task. Conclusions: This nationwide survey study amongst vascular specialists illustrates the current insufficient utilisation of SET as an evidence-based therapeutic cornerstone in patients with lower extremity PAD in Germany. The study also identified several barriers and flaws from the physician's perspectives which should be addressed collectively by all health care providers aiming to increase the SET use and eventually its' impact on patients with PAD.


Assuntos
Doença Arterial Periférica , Cirurgiões , Feminino , Humanos , Masculino , Qualidade de Vida , Terapia por Exercício/efeitos adversos , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/terapia , Claudicação Intermitente/diagnóstico , Claudicação Intermitente/terapia , Exercício Físico , Caminhada
16.
Vasa ; 52(3): 141-146, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36935626

RESUMO

Endovascular arterial revascularisations for the treatment of symptomatic peripheral arterial disease are constantly increasing in importance and number due to the changing age structure and high numbers of comorbidities in the German population. Patients with peripheral artery disease are often at increased risk for peri- and post-procedural complications including severe cardiovascular events. Due to limited financial and human resources and considerable risks of hospitalization, endovascular interventions that were previously reserved for hospitalized patients are now progressively considered to be performed as day case procedures. More than one third of these procedures are performed in Germany by internists with a specialization in angiology. In the current position paper the German Society of Angiology endorsed by the European Society of Vascular Medicine, summarizes the requirements and risk factors to be considered for the planning, safe performance and post procedural care of endovascular revascularizations in outpatients. The performance of endovascular procedures for peripheral artery disease both in hospitalised and outpatients should be accompanied by a mandatory quality assurance process that should not only capture procedural data, but also require documentation of complications and longterm outcome.


Assuntos
Procedimentos Endovasculares , Doença Arterial Periférica , Humanos , Resultado do Tratamento , Procedimentos Endovasculares/efeitos adversos , Hospitalização , Assistência Ambulatorial , Doença Arterial Periférica/diagnóstico por imagem , Doença Arterial Periférica/terapia , Fatores de Risco
17.
Vasa ; 52(3): 147-159, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36924047

RESUMO

Together with colleagues from different disciplines, including cardiologists, interventional radiologists and vascular surgeons, committee members of the of the German Society of Angiology (Deutsche Gesellschaft für Angiologie [DGA]), developed a novel algorithm for the endovascular treatment of peripheral chronic total occlusive lesions (CTOs). Our aim is to improve patient and limb related outcomes, by increasing the success rate of endovascular procedures. This can be achieved by adherence to the proposed crossing algorithm, aiding the standardization of endovascular procedures. The following steps are proposed: (i) APPLY Duplex sonography and if required 3D techniques such as computed tomography or magnetic resonance angiography. This will help you to select the optimal access site. (ii) EVALUATE the CTO cap morphology and distal vessel refilling sites during diagnostic angiography, which are potential targets for a retrograde access. (iii) START with antegrade wiring strategies including guidewire (GW) and support catheter technology. Use GW escalation strategies to penetrate the proximal cap of the CTO, which may usually be fibrotic and calcified. (iv) STOP the antegrade attempt depending on patient specific parameters and the presence of retrograde options, as evaluated by pre-procedural imaging and during angiography. (v) In case of FAILURE, consider advanced bidirectional techniques and reentry devices. (vi) In case of SUCCESS, externalize the GW and treat the CTO. Manage the retrograde access at the end of the endovascular procedure. (vii) STOP the procedure if no progress can be obtained within 3 hours, in case of specific complications or when reaching maximum contrast administration based on individual patient's renal function. Consider radiation exposure both for patients and operators. In this manuscript we systematically follow and explain each of the steps (i)-(vi) based on practical examples from our daily routine. We strongly believe that the integration of this algorithm in the daily practice of endovascular specialists, can improve vessel and patient specific outcomes.


Assuntos
Procedimentos Endovasculares , Doença Arterial Periférica , Humanos , Doença Arterial Periférica/diagnóstico por imagem , Doença Arterial Periférica/terapia , Procedimentos Endovasculares/efeitos adversos , Angiografia , Cateterismo , Resultado do Tratamento , Doença Crônica
18.
Sci Rep ; 13(1): 4389, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928369

RESUMO

Pathological remodeling of the extracellular matrix is a hallmark of cardiovascular disease. Abnormal fibrosis causes cardiac dysfunction by reducing ejection fraction and impairing electrical conductance, leading to arrhythmias. Hence, accurate quantification of fibrosis deposition in histological sections is of extreme importance for preclinical and clinical studies. Current automatic tools do not perform well under variant conditions. Moreover, users do not have the option to evaluate data from staining methods of their choice according to their purpose. To overcome these challenges, we underline a novel machine learning-based tool (FibroSoft) and we show its feasibility in a model of cardiac hypertrophy and heart failure in mice. Our results demonstrate that FibroSoft can identify fibrosis in diseased myocardium and the obtained results are user-independent. In addition, the results acquired using our software strongly correlate to those obtained by Western blot analysis of collagen 1 expression. Additionally, we could show that this method can be used for Masson's Trichrome and Picosirius Red stained histological images. The evaluation of our method also indicates that it can be used for any particular histology segmentation and quantification. In conclusion, our approach provides a powerful example of the feasibility of machine learning strategies to enable automatic analysis of histological images.


Assuntos
Insuficiência Cardíaca , Miocárdio , Animais , Camundongos , Miocárdio/metabolismo , Insuficiência Cardíaca/metabolismo , Fibrose , Coloração e Rotulagem , Análise por Conglomerados
19.
Vasa ; 52(2): 81-85, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36734252

RESUMO

Tobacco consumption is one of the most important risk factors for cardiovascular disease. Despite all efforts to curb any form of smoking, the number of e-cigarette users is still rising more than tabacco smoking decreases. E-cigarettes are often advertised as less harmful than regular cigarettes and helpful for smoking cessation. But e-cigarettes are not risk-free and their use causes vascular damage. There is concern about long-term health risks of e-cigarettes or when non-smokers use them as first nicotine contact. Furthermore, their use for smoking cessation is discussed controversially. To optimize treatment and medical counselling of current smokers and e-cigarette users, we present an evidence-based overview of the most important issues of e-cigarette use from a vascular medicine point of view. The key messages are presented as a position statement of the German Society of Vascular Medicine and endorsed by the European Society of Vascular Medicine.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Abandono do Hábito de Fumar , Humanos , Fumar/efeitos adversos , Fatores de Risco
20.
Cells ; 12(3)2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36766785

RESUMO

(1) Background: Diabetic cardiomyopathy is a major health problem worldwide. CTRP9, a secreted glycoprotein, is mainly expressed in cardiac endothelial cells and becomes downregulated in mouse models of diabetes mellitus; (2) Methods: In this study, we investigated the impact of CTRP9 on early stages of diabetic cardiomyopathy induced by 12 weeks of high-fat diet; (3) Results: While the lack of CTRP9 in knock-out mice aggravated insulin resistance and triggered diastolic left ventricular dysfunction, AAV9-mediated cardiac CTRP9 overexpression ameliorated cardiomyopathy under these conditions. At this early disease state upon high-fat diet, no fibrosis, no oxidative damage and no lipid deposition were identified in the myocardium of any of the experimental groups. Mechanistically, we found that CTRP9 is required for insulin-dependent signaling, cardiac glucose uptake in vivo and oxidative energy production in cardiomyocytes. Extensive RNA sequencing from myocardial tissue of CTRP9-overexpressing and knock-out as well as respective control mice revealed that CTRP9 acts as an anti-inflammatory mediator in the myocardium. Hence, CTRP9 knock-out exerted more, while CTRP9-overexpressing mice showed less leukocytes accumulation in the heart during high-fat diet; (4) Conclusions: In summary, endothelial-derived CTRP9 plays a prominent paracrine role to protect against diabetic cardiomyopathy and might constitute a therapeutic target.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Resistência à Insulina , Camundongos , Animais , Cardiomiopatias Diabéticas/metabolismo , Complemento C1q/metabolismo , Células Endoteliais/metabolismo , Adiponectina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Miócitos Cardíacos/metabolismo , Inflamação/patologia , Camundongos Knockout , Diabetes Mellitus/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...